
8 The Delphi Magazine Issue 28

Subclassing
by Brandon Smith

Subclassing is a Windows API
programming term that has

nothing to do with the fact that
almost every Delphi program con-
sists of a one or more subclasses
derived from the TObject class.
Creating subclasses with new or
altered characteristics is the
essential business of Delphi pro-
grammers. So I was a bit confused
the first time I came across a news-
group message stating that “...sub-
classing is what you need to do...”
This article will explain what sub-
classing is, when to do it, how to do
it, and along the way provide some
details from a couple of situations
where subclassing is the required
technique.

Subclassing in Windows API
jargon is a very specific technique
which to me, at least, ought to be
called something like event han-
dling takeover. It is definitely not
another term for creating descen-
dants of a class. Instead it is more
like a way to bypass normal inheri-
tance, a way for a child to alter how
its parent behaves. Subclassing is
not a way of setting up things at the
declaration level with classes, but
a technique for altering behavior of
already instantiated objects.

In a Windows program, every
instantiated class has a handle. If
we think of each of these handles
as an intersection in a busy city,
the Window Procedure (WNDPROC) is
the traffic cop standing in the
middle of that intersection, direct-
ing traffic. Subclassing is when we
jump in and substitute ourselves
for that traffic cop. By contrast,
within a Delphi program, a sub-
class, an object descended from
TWinControl, builds a new intersec-
tion as well as putting in a new traf-
fic cop. In other words, the Delphi
VCL is to native Windows as a free-
way cloverleaf is to Piccadilly
Circus.

Analogy aside, Windows sub-
classing basically consists of sub-
stituting your own handler for the
default handler, the WNDPROC, of an

under Windows 95 or NT since
each process has its own space
and its own thread, but it can be
done by someone who under-
stands how to control threads.
using MUTEX and related objects. I
won’t go into any more detail on
this kind of subclassing. However,
much of what is discussed in the
rest of this article does apply when
you are subclassing into another
application.

When does the Delphi VCL not
go far enough? One example is
shown in the Delphi 2 Developer’s
Guide (by Xavier Pacheco and
Steve Teixeira), Chapter 10: draw-
ing a bitmap on the client surface of
an MDI application. It is easy
enough to draw a bitmap on the
canvas of a TForm, but what makes
subclassing necessary here is the
fact that there is no convenient
Delphi way to tell that canvas to
refresh itself when a child window
is moved or closed. Subclassing
permits us to redefine how the
client surface is created and in that
redefinition, include message han-
dling to keep the client surface
updated.

The first of the two situations I
found myself dealing with was a
non visual component which
needed to find the size and location
of its owning form at runtime. The
second situation involves a visual
component, a descendent of TCus-
tomMemo which turns scroll bars on
and off according to whether they
are needed. It turned out I needed
to capture the EN_CHANGE notifica-
tion message which is handled by
its parent, a parent which is
unknown at compile time, a parent
which may be the form or any TWin-
Control on the form. Before dealing
with these situations, however,
let’s go over the traditional method
used to implement subclassing.

Traditional
Subclassing Technique
You will find most Windows
programming books describe

existing Windows class. In the
Windows system, an essential
ingredient of the instantiation of
each window class is the WNDPROC, a
function which serves as the
central traffic cop for messages
coming to that window. For a
native Windows class, such as an
edit box, Delphi simply points to
the code inside the appropriate
Windows DLL which implements
the edit box’s WNDPROC. This is
accomplished inside the Create-
Params method, the WNDPROC being
specified inside the WNDCLASS
structure.

The Delphi VCL puts Object
Pascal wrappers around the vast
majority of Windows classes, and
surfaces event handler hooks for
just about every message that can
come to or from that kind of
Window class. On top of that, you
can override any Windows Mes-
sage handler within a Delphi class
that handles messages. Plus, inside
the Delphi VCL there are compo-
nent notification messages which
can be handled within Delphi. So
why would a Delphi programmer
have to resort to subclassing?

When Is Subclassing Needed?
There are two kinds of situation
where subclassing techniques
become necessary. The first is
when you want to do something
which is not encapsulated by the
Delphi VCL and cannot be directly
controlled from a message han-
dler. The second situation is when
you want to control another appli-
cation directly. In this article I’m
going to describe in detail a few
instances of the first situation, and
only touch briefly on the second.

Subclassing an object in another
application is the only way you can
get at another application’s data or
functions when there are no OLE,
DDE or other inter-process com-
munication links available. It is
fairly easy to do under Windows
3.x, since all the processes live in
the same place. It is not so easy

10 The Delphi Magazine Issue 28

subclassing this way, albeit in C or
C++. In Delphi terms, we need a far
function to be our new WNDPROC,
three variables, and code to turn
on and turn off the subclassing
activity.

App1main.pas on the disk illus-
trates the traditional approach. It
uses an object independent func-
tion for the new handler, declared
the way a WNDPROC has to be:

function NewFormFunction(
handle: hWnd; msg, wParam :
Word; lParam : LongInt):
LongInt; stdcall;

Although Microsoft calls this a
Window Procedure, and Delphi fol-
lows the convention by declaring
several WindowProc related proper-
ties and methods, I like to include
the word Function when I subclass
so that I am reminded this is a func-
tion and Windows does expect a
return code.

For our variables, we need one to
point to the original handler,
another one to point to our new
handler and something to hold the
handle of the window we are going
to subclass. There are some situa-
tions where we won’t need a vari-
able for the handle, but we will
always need the first two.

var
NewWindowProc : TFarProc;
OldWindowProcAddr : LongInt;
TargetHandle : hWnd;

To turn on the subclassing, all we
need to do is assign the correct
values to the variables and fire the
API call that changes where Win-
dows will look for the handler to
the class we are taking over. We do
that in the OnCreate event for our
form by calling TurnSubClassOn
(Listing 1).

Whatever we need to do the sub-
classing for is accomplished in our
new function, with a couple of
important rules to keep in mind.
The first rule is to remember that
this new WNDPROC is going to grab all
messages going to the instantia-
tion of the Windows class whose
handle we’ve taken over. There-
fore, as with VCL objects, we need
to be sure to pass control back to

Procedure tmyForm.TurnSubClassOn;
begin
TargetHandle := handle;
OldWindowProcAddr := GetWindowLong(TargetHandle, GWL_WNDPROC);
NewWindowProc := @NewFormFunction;
SetWindowLong(TargetHandle, GWL_WNDPROC, LongInt(NewWindowProc));

end;

➤ Listing 1

function NewFormFunction(handle: hWnd; msg, wParam : Word; lParam : LongInt):
LongInt;

begin
case msg of
WM_LBUTTONDOWN : MyForm.color := clLime;
WM_RBUTTONDOWN : MyForm.color := clWhite;

end;
Result :=
CallWindowProc(TfarProc(OldWindowProcAddr), Handle, Msg, wParam, lParam);

end;

➤ Listing 2

function AlternateNewFormFunction(handle: hWnd; msg, wParam : Word;
lParam : LongInt): LongInt;

begin
Result :=
CallWindowProc(TfarProc(OldWindowProcAddr), Handle, Msg, wParam, lParam);

case msg of
WM_LBUTTONDOWN : MyForm.color := clLime;
WM_RBUTTONDOWN : MyForm.color := clWhite;

end;
end;

➤ Listing 3

the original object to handle any
messages we don’t care about. The
second rule is to remember that
Windows thinks this is the handler
for this class and may be expecting
certain result codes, so we have to
make sure an appropriate result is
defined within our new Windows
Procedure. The best way to obey
both rules is to call the original
handler at the end.

What this subclassing function
does is take over the mouse button
handling. It turns the form’s color
green when the left button is
pressed and white when the right
button is pressed. I’ve provided a
button and event handler in Listing
2 to illustrate how we can accom-
plish the same thing using a stan-
dard VCL event handler. By using
yellow and red as the colors set
when the VCL event handler is in
charge, you can see that our sub-
classing activity is overruled by
the VCL since the VCL activity is
being called from the original
WNDPROC which is called after our
subclassing activity. The color
changes made by our subclassing
do occur, as you can verify with the
debugger, but you won’t see them

on the screen. App1main has several
buttons so you can see how the
various combinations of subclass-
ing and event handling work.

Hint: if you want to trace through
this behavior in the integrated
debugger, put your breakpoint
inside the case statement: if you
put a break point on the case line
or the CallWindowProc line you will
discover that there are a lot of mes-
sages being handled by the form’s
Window Procedure. So many that
you’ll never get to see the program
running. This is one of the main
reasons you are not running
Windows on an 8088. It is also the
reason why you need to keep proc-
essing to a minimum inside a
subclass function.

What Happens If We Call
The Original Handler First?
The AlternativeNewFormFunction
and its activator, Button2, illustrate
what happens when you change
the guts of the subclassing func-
tion (Listing 3).

In this case it effectively elimi-
nates the VCL event handler, the
ability to change the form yellow
and red. This is because the call to

12 The Delphi Magazine Issue 28

the original WindowProc fired the
MouseDown event before arriving at
our subclass case statement which
takes over and uses green and
white, again so quickly you can’t
even see the flicker.

Generally speaking, one can sub-
class as many times as one wants
as long as an unbroken chain even-
tually gets the control back to the
original object for the messages we
are not intercepting. What I have
found, however, is that there are
situations where you need to turn
off an existing subclass before
turning on a different one. In this
case, if you leave out the first line in
TMyForm.Button2Click, you’ll end
up with a lot of disk activity fol-
lowed by a stack overflow. If you’ve
never managed to lock up your
computer from within the Delphi
IDE, I can safely predict that work-
ing with subclassing will provide
you that experience.

Another hint: I discovered that
when you get a fatal error while
running a program within the IDE
and you have the Close/Details
box sitting there awaiting your
attention, the best thing to do is to
go up to the Delphi Run menu and
click on Reset Program first, then
click on the Close button. Clicking
on the Close button seems to
almost always lead to a reboot.

The Problem With
Traditional Subclassing
This traditional, non-OOP, appr-
oach to subclassing has a major
drawback, however. Suppose we

case msg of
WM_DESTROY : UnkownForm.MyComponent.SaveFormInfo;
WM_ACTIVATE : UnkownForm.MyComponent.RestoreFormInfo;
WM_CHILDACTIVATE : UnkownForm.MyComponent.RestoreFormInfo;

end;

➤ Listing 4

need to subclass the parent of a
component whose name we do not
know at compile time? Specifically,
I needed my WNDPROC subclass to do
something similar to that shown in
Listing 4.

This is the situation I faced when
I was developing a non visual com-
ponent to save the size and posi-
tion of a form, as well as the
location of user-moveable controls
on that form such as splitter bars.
In my save-the-window compo-
nent, I needed to intercept the
WM_DESTROY or WM_ACTIVATE mess-
ages sent to the form and save or
retrieve that form’s size and posi-
tion data as well as iterate through
the owned controls and save their
size and position. Turning on the
subclass from within my compo-
nent was easy since my component
has an Owner property, which is the
form it was dropped onto. But the
subclass function itself was not
part of my component’s class defi-
nition. So, when control passes to
the WNDPROC, all I have at that point
is a handle to the form, I no longer
have anything which tells me
which instance of my component
this WNDPROC belongs to.

Delphi doesn’t provide a func-
tion you can feed a handle to and
get back a TForm, though I did
consider trying to build one by
starting at application level and
iterating through all the forms until
I found the one whose handle
matched the handle in my sub-
classing WNDPROC, but this puts
quite a bit of processing work into

the WNDPROC, a function that gets
called frequently. On top of that,
once I knew which form I had, I’d
still have to go through its
components and look for mine.

A Windows API Solution
I came up with a workaround to
this problem by using the Win-
dows API SetProp and GetProp calls.
For clarity, I have put together
AwkMain.pas and AwkWorks.pas
on the disk to illustrate this tech-
nique using a TCustomPanel as the
component who needs to find out
which form it belongs to.

SetProp lets one add some infor-
mation to a particular instantia-
tion of a Windows class at runtime.
The information consists of a
string or a pointer to a global atom
and a longint. GetProp can then be
used to retrieve that information.
By executing the following code
within the method my component
used to turn on subclassing, I was
able to add some useful informa-
tion to the windows class instan-
tiation of the form my component
was dropped on.

SetProp(fTargetHandle, cMyID,
longint(self));

Once the form has been branded
with my component’s information,
GetProp will give me a pointer to
myself, to the instance of my com-
ponent that is associated with the
handle receiving message traffic to
be processed (Listing 5).

The Delphi Solution
I think you can see from the com-
plex typecasting why I’ve called
this TAwkward. At the time I thought
it rather elegant. Since then, how-
ever, I was able to upgrade my
paper library from Delphi Develop-
er’s Guide to Delphi 2 Developer’s
Guide where I discovered that
Borland has provided a simple and
elegant solution to this problem:
MakeObjectInstance.

I don’t know whether this func-
tion is in the help files anywhere, I
certainly haven’t been able to find
it. It is declared and implemented
in the Forms unit. This function sets
up code so that a specific kind of
class method can be used as a

function NewFormFunction(handle: hWnd; msg, wParam : Word; lParam : LongInt):
LongInt;

var ThisInstance : longint;
begin
ThisInstance := getProp(handle, cMyID);
if TAwkwardComp(ThisInstance).enabled then
case msg of
WM_LBUTTONDOWN : TAwkwardComp(ThisInstance).color := clLime;
WM_RBUTTONDOWN : TAwkwardComp(ThisInstance).color := clWhite;

end;
Result := CallWindowProc(TFarProc(TAwkwardComp(ThisInstance).fOldWindowProc),
Handle, Msg, wParam, lParam);

end;

➤ Listing 5

December 1997 The Delphi Magazine 13

WNDPROC. The files Example.pas,
Example2.pas and app2main.pas
on the disk contain the code for
this example.

I’ve followed Pacheco and
Teixeira’s (ibid, page 905) variable
typing schema in this example,
though I could have used the same
types I used before with different
typecasting. Whenever you deal
with the Windows API, you will be
typecasting at some point since
Microsoft is in love with C++ and
C++ programmers love to overload
variables. For an excellent,
detailed and reasonably non-
biased discussion of the difference
between Object Pascal and C++, I
would recommend Bruce Eckel’s
introduction to Gary Entsminger’s
The Way of Delphi.

Using MakeObjectInstance to do
subclassing still requires calling
the original handler and being
aware that this new WNDPROC will be
called many times during program
execution. The basic difference is
that we are now working with a
class method that knows who it is
and has ready access to itself and
its parent. Also, instead of having
the window parameters listed as
separate arguments, they are con-
tained within a TMessage record
(the declaration can be found in
Controls.pas). The code snippets
shown in Listings 6 to 8 are from
App2main.pas and the component
file example.pas on the disk.

The variables which support
this OOP approach to subclassing
can now be put in the private part
of our component’s class defini-
tion, keeping them out of public
view and reducing the chance of
name space confusion.

Turning on this kind of subclass-
ing uses essentially the same steps
as the non-OOP approach. I fol-
lowed Pacheco and Teixeira’s
shortcut here, using the fact that a
successful

SetWindowLong(
x, GWL_WNDPROC, y);

call returns the longint which
points to the previous WindowProc.

Why not simply turn on the
subclassing in the constructor?
Pacheco and Teixeira did in their

procedure Texample.NewFormFunction(var msg : TMessage);
begin
case msg.msg of
WM_LBUTTONDOWN : color := clLime;
WM_RBUTTONDOWN : color := clWhite;

end;
msg.Result := CallWindowProc(fOldWindowProc, fTargetHandle,
msg.Msg, msg.wParam, msg.LParam);

end;

➤ Listing 6

type
Texample = class(TCustomPanel)
private
fNewWindowProc : Pointer; {pointer to our window function}
fOldWindowProc : Pointer; {previous window function }
fTargetHandle : hWnd;

Procedure NewFormFunction(var msg : tmessage);
...

➤ Listing 7

procedure texample.turnOnSubClassing;
begin
fTargetHandle := parent.handle;
fNewWindowProc := MakeObjectInstance(NewFormFunction);
fOldWindowProc := Pointer(SetWindowLong(fTargetHandle, GWL_WNDPROC,
LongInt(fNewWindowProc)));

end;

➤ Listing 8

example, or more precisely, they
subclassed the Application.
Handle, an entity which exists
before (almost) anything else is
created. Unfortunately, the parent
of a component cannot be
determined within the Create
constructor.

However, if you are subclassing
the form on which a component
has been dropped, you do have
typecasted access to the
Owner.Handle by using TwinCon-
trol(aOwner) or Tform (aOwner). In
other words, if the entity whose
event handling you need to take
over is the form or the application,
you can set up the subclassing in
the component’s Create construc-
tor. I’ve used this technique in the
file Awkworks.pas (which is also on
the disk), turning on the subclass-
ing during the create constructor
as well as doing some error check-
ing to make sure the subclassing
worked.

The Parenting
Problem And Solution
For visual components, however,
you may well want to subclass
something other than the form.
You may need to subclass the
parent of your component. And
the parent, unlike the owner, can
be any TWinControl descendent. In
that case you will not be able to
turn on the subclassing within the
Create constructor because the
parent is not known during con-
struction. The event shown in
Listing 9 from app2main.pas puts
our example component on a
panel and subclasses the panel’s
WNDPROC rather than the form’s
WNDPROC. The functional result is
that clicking on the form will not
trigger our new subclass actions,
but clicking on the panel will.

It would hardly make you popu-
lar as a component maker if your
users have to remember to use
TurnOnSubclassing in order for

procedure TForm1.Button4Click(Sender: TObject);
begin
with texample.create(Panel1) do begin
parent := Panel1;
top := panel1.height div 2 - height div 2;
Left := panel1.width div 2 - width div 2;
turnOnSubclassing;

end;
end;

➤ Listing 9

14 The Delphi Magazine Issue 28

your component to work properly.
Since we can’t use our compo-
nent’s Parent property during its
constructor, we have to turn on the
subclassing at a later point. In the
world of object-oriented event han-
dling, as soon as Windows learns
that a handle exists, as soon as the
create constructor is complete,
messages start buzzing around like
bees in field of flowers. All we have
to do is grab one and use it to do
our work.

I suspect that it might be more
efficient to use one of Delphi’s
component notification messages,
such as CM_INVALIDATE, since these
do not involve any Windows
overhead. In any case, however,
notice that I’ve introduced a flag,
fSubClassDone, so that I can ensure
the subclassing only gets done
once. See App2main and exam-
ple2.pas on the disk. App2Main has a
number of buttons to activate
these components and also illus-
trates multiple subclassing: we end
up with two custom panels par-
ented by Panel1, and both imple-
ment subclassing of Panel1’s
WNDPROC.

I’m not sure if it is a good idea to
use WM_PAINT, since this message
seems to be very frequently used,
and this does add a few machine
cycles to every occurrence. On the
other hand, this frequency of
occurrence pretty much guaran-
tees the subclassing will get turned
on in a timely manner.

Texample2 = class(TCustomPanel)
private
...
fSubClassDone : boolean;
procedure WMPAINT(var Message: TMessage); message WM_PAINT;

...
procedure Texample2.WMPAINT(var Message: TMessage);
begin
inherited;
if not fSubclassDone then TurnOnSubclassing;

end;

➤ Listing 10

For our final foray into sub-
classing, consider the ubiquitous
TMemo. How many times have you
dropped a memo on a form and
after seeing some live data in it,
gone back and changed the Scroll-
Bar property? I was frankly disap-
pointed that Delphi’s TMemo didn’t
automatically turn scroll bars on
and off according to what’s in the
memo, following the reasonably
intelligent behavior of TListBox.

I thought that simply using the
OnChange event handler would take
care of this: every time there is a
change, run a scroll checking rou-
tine and modify the scroll bars.
Unfortunately, OnChange doesn’t
get fired if you use a Windows mes-
sage such as WM_SETTEXT to change
the contents of the memo.
App3Main.pas on the disk has an
event handler that illustrates this
failure. I considered the OnEnter
and OnClick events, but I really
wanted the memo to come up with
the proper scroll bars whether the
user clicked or entered or
whatever.

Fumbling around in the Win-
dows API Help files provided with
Delphi, I eventually came across
EN_CHANGE, a notification message
that is sent to the parent of an edit
control in a WM_COMMAND message
after the contents of the edit
control changes. And that’s all it
said, nothing about how to use it.
When I found myself in a large city
recently, I spent a number of hours
in technical bookstores, trying to
find a Windows book that had
something more. About half of
them listed EN_CHANGE, but none of
them provided any more
information.

Finally I came across one which
had one additional sentence sug-
gesting that one could subclass
the parent of the edit control and
use the EN_CHANGE notification mes-
sage as a flag to perform additional
actions when the contents of the
edit control have changed.

When you work with a notifica-
tion message, you have a WM_COM-
MAND message in which the
notification code is found in
wParamHi and the handle of the
child control is found in the LParam.

AutoMemo.pas and its test bed,
App3main.pas, on the disk present
a condensed version of how I use
the EN_CHANGE notification message
to automate a memo’s scroll bars.
As with the previous example, I
couldn’t set up the subclassing in
the constructor since a Memo can be
dropped on a parent other than
the form.

The subclassing WNDPROC used to
capture and deal with EN_CHANGE
required an additional safety
measure (Listing 11).

Since the EN_CHANGE notification
is sent after Windows makes the
change, I wanted to take care of the
original message handling first.
However, this caused a side effect

procedure tAutoMemo.SubClassParentFunc(var Msg : tmessage);
begin
with msg do begin
Result := CallWindowProc(OldWinProc, Parent.handle, Msg, wParam, lParam);
if (msg = WM_COMMAND) and (lparam = handle) then
if WParamHi = en_change then CheckSCrolling;

if msg = WM_DESTROY then
SetWindowLong(parent.handle, GWL_WNDPROC, longint(OldWinProc));

end;
end;

➤ Listing 11

Components which have been incorporated into the VCL (by using
CompLib in Delphi 2 or packages in Delphi 3) automatically create
themselves and establish parenthood when they are dropped on a
form. When developing a component, one normally works with it ini-
tially outside the VCL by writing in an instance of it in an existing
form’s declaration and then creating it in response to button click.
When working this way, one has to explicitly set the parent otherwise
it will not be seen when you run the testing project. If you don’t
specify top and left, they will be 0,0.

16 The Delphi Magazine Issue 28

whose explanation I won’t even
guess at. The literature is quite
clear that one must reinstall the
original WNDPROCwhen you are done
subclassing. I had originally set up
the TAutoMemo component to turn
off the subclassing in the destruc-
tor, before the inherited destroy,
similar to the way Pacheco and
Teixeira did (ibid, p906) in the
FormDestroy method. Apparently
because we are here working with
a component independent of the
form, this did not work, in fact
resulted in a GPF. I suspect the
reasons have to do with the
sequence of messages generated
when a parent receives a
WM_DESTROY message, but in any
case I solved the problem by turn-
ing off the subclassing within the
subclassing function when a
WM_DESTROY message shows up.

Turning on the subclassing for
the auto scrolling is also a bit more
complex than previous examples
(Listing 12).

Most of what’s been added is
insurance. The new variable, fSub-
ClassDone, is set to False in the
component’s constructor and
again when subclassing is turned
off. By setting it True after a suc-
cessful subclass, we ensure we
don’t add any extra layers of proc-
essing. Checking to make sure we
have our own handle allocated will
not be necessary if we know for
sure that the handle exists when
we call on this procedure. But if the
component user has access to the
TurnOnSubClassing procedure, we
can’t rely on that. If, as I ended up
doing in this component, it is possi-
ble for the subclassing to be turned
on and off multiple times during
the component’s life, one needs to
make sure any old method object
instances are taken care of. Finally,
if Windows decides it won’t do the
subclassing for us, it’s a good idea
to raise an exception rather than
have the user think it’s working
when it’s not.

I decided this time to use
WM_ERASEBKGND as the trigger to turn
on subclassing the first time, figur-
ing this message won’t be as
frequent as WM_PAINT. However, to
ensure the component user
doesn’t get ambushed, I also

Procedure tAutoMemo.TurnOnSubclassing;
begin
if HandleAllocated and (not fsubclassDone) then begin
if NewWinProc <> nil then
FreeObjectInstance(newWinProc);

NewWinProc := MakeObjectInstance(SubClassParentFunc);
OldWinProc := Pointer(setWindowLong(parent.handle, GWL_WNDPROC,
longint(NewWinProc)));

if OldWinProc = nil then
raise eAutoMemoError.create('subclass failed');

fSubClassDone := true;
end;

end;

➤ Listing 12

Procedure tAutoMemo.CheckScrolling;
var
tmpScroll : tScrollStyle;

function Translate(customScrollEnum : tSynMemoScrollEnum): tscrollstyle;
begin
case CustomScrollEnum of
smAutoScroll : result := ssNone;
smVertical : result := ssVertical;
smHoriz : result := ssHorizontal;
smBoth : result := ssBoth;
smNoScroll : result := ssNone;

end;
end;
begin
tmpScroll := translate(fScrolling);
if fScrolling = smAutoScroll then begin
if not fSubClassDone then
TurnOnSubClassing;

if lines.count*lineheight > clientheight then tmpScroll := ssVertical
else tmpScroll := ssNone;
// no point in horizontal scrolling unless wordwrap = false
if WordWrap = false then
if (longestline > clientwidth) and (getLinesShowing > 1) then begin
if TmpScroll = ssVertical then TmpScroll := ssBoth
else TmpScroll := ssHorizontal;

end else begin
if TmpScroll = ssBoth then
TmpScroll := ssVertical

else
if lines.count*lineheight > clientheight then TmpScroll := ssVertical
else TmpScroll := ssNone;

end;
end else TurnOffSubClassing;

case fSCrolling of
smAutoSCroll : if scrollbars <> TmpScroll then scrollbars := tmpScroll;
smVertical : if scrollbars <> ssVertical then scrollbars := ssVertical;
smHoriz : if scrollbars <> ssHorizontal then scrollbars := ssHorizontal;
smBoth : if scrollbars <> ssBoth then scrollbars := ssboth;
smNoScroll : if scrollbars <> ssNone then scrollbars := ssnone;

end;
end;

➤ Listing 13

included a call to the TurnOnSub-
Classing method inside the Check-
Scrolling method when the
scrolling property is set to
autoscroll (Listing 13).

By using a temporary variable
and a separate case statement at
the end where I make sure a change
is only made if a change is called
for, I eliminate extra calls to Recre-
ateWnd which is what TCustomMemo
uses when it changes the scroll bar
setting. I spent a couple of hours in
a panic when I realized this, think-
ing that my subclassing couldn’t
possibly work if the handle of the
component was being changed
every time the ScrollBar property
changed. I had been using the
debugger and was more than a bit

perturbed when I overrode the
RecreateWnd component notifica-
tion and discovered my compo-
nent was getting a new handle
whenever the ScrollBar property
changed as well as every time the
Alignment or WordWrap properties
changed. Actually it seemed to be
changing a lot more frequently
than that, but I didn’t pursue it
when I found that Borland has
taken care of things: whenever the
handle changes, the windows sup-
port structure is updated so the
subclassing points to the right
object.

However, when I took the
TAutoMemo to the next logical step,
data-awareness, I discovered that
the EN_CHANGE notification does not

December 1997 The Delphi Magazine 17

procedure TsynCustomMemo.CMRecreateWnd(var Message: TMessage);
var oldhandle : hwnd;
begin
oldHandle := handle;
inherited;
if oldHandle <> handle then begin
lines.add('old = '+intTostr(oldhandle));
lines.add('new = '+IntToStr(handle));

end;
end;

➤ Listing 14

get fired when we go from one
record to the next. To implement
data-awareness, I simply copied
the code for TDBMemo out from
DBCTRLS.PAS and changed its inheri-
tance from TCustomMemo to TCusto-
mAutoMemo (not shown here: simply
a recasting of TAutoMemo where all
the properties are protected
rather than published). Rather
than jump in and look for another
Windows message to use to turn on
the auto scrolling, I studied the
TDBMemo code and finally decided to
put a call to CheckScrolling at the
end of the DataChange event
handler and that took care of it.

The TAutoMemo example on the
disk does not include several
additional items I found necessary
for a decent component, but not
necessary to explain how subclass-
ing works: for example, the Check-
Scrollingmethod, when it changes
the scroll bars, will always recreate
the memo with the top line at the
top and the cursor at 0,0. A ‘produ-
ction’ version of TAutoMemo, called
TSynMemo and with more features,
was included on the Issue 27 disk
and is also available on The Delphi
Magazine website
(www.itecuk.com).

A final comment before summa-
rizing. TControl has a property,
WindowProc, which the Help says is
to be used “to temporarily replace
or subclass the window procedure
of the control.” There is also a
TControl.WndProc method, which is
the procedure itself, virtual, so it
can be overridden. However, it
would appear these animals are
designed to support altering the
behavior of your own control, not
the behavior of another control
which happens to be the parent of
your control. If a reader can show
me how these guys can simplify
what I’ve described above, I’d be
happy to use them.

In summary, the main points to
keep in mind when considering the
use of Windows subclassing are:
Don’t subclass if a VCL event han-
dler or a message override or com-
ponent notification override will
do the trick. Subclassing bypasses
the numerous object oriented
safety features built into Delphi as
well as introducing a whole raft of
ways to crash your program.

Be sure you understand the dif-
ference between the parent and
the owner, and that the parent is
not in scope during the create con-
structor. Therefore, be aware that
turning on subclassing of anything
other than the main application
WNDPROC or a TForm’s WNDPROC will
require some planning and experi-
mentation.

Inside your new WNDPROC, you are
replacing the traffic cop in the
middle of a very busy intersection.
Like that cop, your toes are in
danger of being run over and if you
wave your arms the wrong way,
you will cause at least a traffic jam
and at worst an accident with
fatalities. In other words, Windows
won’t work right if your WNDPROC
doesn’t behave properly.

When you are done subclassing,
don’t leave the scene until the
original traffic cop is back on the
job. Sometimes this works OK, you
can leave out the call to SetWindow-
Long which reinstalls the old
WNDPROC when you destroy your
component or the form it resides
on. But that’s luck, not the way the
system normally works. Some-
times, you have to take special care
to insure the old WNDPROC is re-
instated before your component is
destroyed, rather than as part of
the destruction process.

Brandon Smith lives and works in
Mansfield, MO, USA and can be
emailed at Synature@aol.com

	When Is Subclassing Needed?
	Traditional Subclassing Technique
	What Happens If We Call The Original Handler First?
	The Problem With Traditional Subclassing
	A Windows API Solution
	The Delphi Solution
	The Parenting Problem And Solution

